
Interférences lumineuses 

 

1) Schéma général du problème 

Considérons deux points 𝐴1 et 𝐵1 de l’espace en lesquels les vibrations du champ 
électromagnétique associé à une onde électromagnétique sont en phase (par exemple deux 
points confondus).  

Considérons deux chemins différents représentés par des rayons lumineux, suivis par cette onde 
et se recoupant en un même point. 

 

Les deux chemins ont la forme d’une ligne brisée, 𝐴1, … , 𝐴𝑛 pour le premier et 𝐵1, … , 𝐵𝑚 pour le 
second (avec 𝐴𝑛 = 𝐵𝑚). Sur chaque segment [𝐴𝑖, 𝐴𝑖+1] la lumière se propage dans un milieu 
transparent homogène d’indice de réfraction 𝑛𝑖 pour la fréquence considérée (ou la période 𝑇 ∗), 
à la vitesse 𝑣𝑖 et sa longueur d’onde dans le milieu est 𝜆𝑖 telle que : 

𝝀𝒊 = 𝒗𝒊 𝑻 

(*) On rappelle que la fréquence et la période ont la même valeur dans chaque milieu) 

Sachant : 

𝒏𝒊 =
𝒄

𝒗𝒊
 

𝑐 étant la célérité de l’onde dans le vide pour lequel sa longueur d’onde est notée 𝜆0 et vaut : 

𝝀𝟎 = 𝒄 𝑻 

On en déduit : 

𝝀𝒊 =
𝝀𝟎

𝒏𝒊
 

 



Sur le second chemin, l’indice sera noté 𝑛′𝑖 sur [𝐵𝑖 , 𝐵𝑖+1], la longueur d’onde 𝜆′𝑖 et la vitesse 𝑣′𝑖 

Nous supposerons dans un premier temps que le passage d’un segment au suivant sur une ligne 
brisée est le seul fait d’une réfraction (s’il y a des réflexions il faut apporter une correction à cette 
démarche) 

2) Calcul du temps de parcours de l’onde sur les deux chemins 

Sur le premier chemin, la durée de parcours Δ𝑡 de l’onde entre le point 𝐴1 et le point 𝐴𝑛 est égale 
à la somme des durées pour parcourir chaque segment de la ligne brisée, soit : 

Δ𝑡 = ∑
𝐴𝑖𝐴𝑖+1

𝑣𝑖

𝑛−1

𝑖=1

=
1

𝑐
∑ 𝑛𝑖 𝐴𝑖𝐴𝑖+1

𝑛−1

𝑖=1

 

On définit alors la notion de chemin optique associé à un trajet de la lumière selon une ligne 
brisée comme étant la quantité : 

𝑳𝑨𝟏𝑨𝒏
= ∑ 𝒏𝒊 𝑨𝒊𝑨𝒊+𝟏

𝒏−𝟏

𝒊=𝟏

 

La durée de parcours s’écrit alors sous la forme : 

𝚫𝒕 =
𝑳𝑨𝟏𝑨𝒏

𝒄
 

 

Sur le second chemin, la durée de parcours s’écrit de façon analogue : 

Δ𝑡′ =
𝐿𝐵1𝐵𝑚

𝑐
 

où on a défini le chemin optique associé à ce second trajet : 

𝐿𝐵1𝐵𝑚
= ∑ 𝑛′𝑖 𝐵𝑖𝐵𝑖+1

𝑚−1

𝑖=1

 

Nous pouvons alors exprimer la différence de durée en valeur absolue : 

|𝚫𝒕 − 𝚫𝒕′| =
|𝑳𝑨𝟏𝑨𝒏

− 𝑳𝑩𝟏𝑩𝒎
|

𝒄
 

On appelle alors différence de marche la quantité égale à la différence entre les deux chemins 
optiques en valeur absolue, soit : 

𝜹 = |𝑳𝑨𝟏𝑨𝒏
− 𝑳𝑩𝟏𝑩𝒎

| 

La différence de durée devient : 

|𝚫𝒕 − 𝚫𝒕′| =
𝜹

𝒄
 

 

 



3) Condition d’interférences constructives et destructives 

 

Si les vibrations provenant au point de concours des deux trajets 𝐴𝑛 = 𝐵𝑚 sont en phase alors en 
ce point, les amplitudes des deux parties de l’onde ayant pris des chemins différents s’ajoutent. 
On dit que l’onde  produit des interférences constructives 

Si, en revanche, les vibrations sont en opposition de phase, alors en ce point la vibration 
résultante a une amplitude égale à la différence d’amplitude en valeur absolue entre les deux 
parties de l’onde. On dit que l’onde  produit des interférences destructives. 

La condition pour qu’un onde produise des interférences constructives est que la différence de 
durée sur les deux chemins soit égale à un nombre entier de périodes, soit : 

|Δ𝑡 − Δ𝑡′| = 𝑘 𝑇 = 𝑘 
𝜆0

𝑐
 , 𝑘 ∈ ℕ 

Ce qui s’écrit encore : 

𝛿

𝑐
= 𝑘 

𝜆0

𝑐
  

On obtient ainsi la règle : 

Une onde produit par deux trajets différents des interférences constructives si la différence 
de marche entre les deux trajets est égale à un nombre entier de longueurs d’onde, soit 
encore un nombre pair de demi-longueurs d’onde, soit : 

𝜹 = 𝒌 𝝀𝟎 = 𝟐 𝒌 
𝝀𝟎

𝟐
,   𝒌 ∈ ℕ 

La condition pour qu’une onde produise des interférences destructives est que la différence de 
durée sur les deux chemins soit égale à un nombre impair de demi-périodes, soit : 

|Δ𝑡 − Δ𝑡′| = (2 𝑘 + 1) 
𝑇

2
= (2 𝑘 + 1) 

𝜆0

2 𝑐
 , 𝑘 ∈ ℕ 

ce qui s’écrit encore : 

𝛿

𝑐
= (2 𝑘 + 1) 

𝜆0

2 𝑐
  

On obtient ainsi la règle : 

Une onde produit par deux trajets différents des interférences destructives si la différence 
de marche entre les deux trajets est égale à un nombre entier de longueurs d’onde, soit : 

𝜹 = (𝟐 𝒌 + 𝟏) 
𝝀𝟎

𝟐
,   𝒌 ∈ ℕ 

 

 

 

 



4) Problème posé par la réflexion 

 

Si dans la ligne brisée, il y a un passage d’un segment au suivant dû à une réflexion, alors il faut 
envisager deux cas : 

Premier cas : Le milieu dans lequel se fait la réflexion a un indice de réfraction moins élevé que 
le milieu dans lequel il y aurait réfraction (Par exemple, réflexion dans l’air sur un miroir) 

Dans ce cas le rayon réfléchi est au point de réflexion en opposition de phase avec le rayon 
incident, comme illustré sur la figure.  

 

Cela modifie alors le raisonnement en ce sens que pour obtenir des interférences constructives, 
il faut, s’il n’y a qu’une seule réflexion de ce type, que la différence des durées en valeur absolue 
soit égale à un nombre impair de demi-périodes, et pour des interférences destructives, un 
nombre pair. 

Cela se traduit par des conclusions inversées sur la différence de marche. 

Afin de ne pas créer une règle nouvelle, on convient d’enlever (ou d’ajouter) au chemin 

optique une demi-longueur d’onde 𝝀𝟎

𝟐 
 pour chaque réflexion de ce type. 

Si par exemple, une seule réflexion de ce type a eu lieu sur le premier chemin, alors le chemin 
optique devient : 

𝑳𝑨𝟏𝑨𝒏
= ∑ 𝒏𝒊 𝑨𝒊𝑨𝒊+𝟏

𝒏−𝟏

𝒊=𝟏

−
𝝀𝟎

𝟐 
 

Second cas : Le milieu dans lequel se fait la réflexion a un indice de réfraction plus  élevé que le 
milieu dans lequel il y aurait réfraction. 

Dans ce cas le rayon réfléchi est au point de réflexion en phase avec le rayon incident, comme 
illustré sur la figure et on applique les mêmes règles que précédemment (vues en 3). 



 

 

5) Interférences produites par une fine couche réfléchissante 

 

   Un faisceau de lumière incident monochromatique, se propageant dans l’air et formé de rayons 
parallèles atteignant une couche plane d’épaisseur 𝑒  se réfléchit pour partie sur sa surface 
supérieure, et pour une autre partie, se transmet par réfraction dans la couche puis se réfléchit 
sur la surface inférieure avant de se réfracter à nouveau dans l’air et d’être capté par l’œil d’un 
observateur. 

   Isolons un rayon incident, parvenant sur la surface supérieure en un point 𝑂 sous un angle 
d’incidence 𝑖. Il génère un premier rayon réfléchi sous le même angle 𝑖 et un rayon réfracté sous 
un angle 𝜃 dans la couche qui est un milieu d’indice 𝑛 pour la longueur d’onde considérée. Puis 
le rayon réfracté génère un second  rayon réfléchi sur la surface inférieure en un point 𝐴, ce rayon 
se réfractant dans l’air en un point 𝐵 sous l’angle 𝑖. 

 

 

La différence de marche entre les deux trajets [𝑂, 𝐴, 𝐵] et [𝑂, 𝐶] est : 

𝜹 = 𝒏 (𝑶𝑨 + 𝑶𝑩) − 𝒏𝒂𝒊𝒓 𝑶𝑪 +
𝝀

𝟐
 

A noter le retrait d’une demi longueur d’onde sur le second chemin pour lequel il y  a une 
réflexion dans l’air face à un milieu d’indice plus élevé. 

Explicitons alors cette différence de marche grâce à des relations géométriques : 



 

 

𝑐𝑜𝑠(𝜃) =
𝑒

𝑂𝐴
,      𝑠𝑖𝑛(𝑖) =

𝑂𝐶

𝑂𝐵
,      𝑂𝐵 = 2 𝑂𝐻,   𝑠𝑖𝑛(𝜃) =

𝑂𝐻

𝑂𝐴
 

La loi de la réfraction de  Snell-Descartes donne également : 

𝑛𝑎𝑖𝑟 𝑠𝑖𝑛(𝑖) = 𝑛 𝑠𝑖𝑛(𝜃) 

On en tire : 

𝛿 = 2 𝑛 𝑂𝐴 − 𝑛𝑎𝑖𝑟 𝑂𝐶 +
𝜆

2
 

= 2 𝑛 𝑂𝐴 − 𝑛𝑎𝑖𝑟 𝑂𝐵 𝑠𝑖𝑛(𝑖) +
𝜆

2
  

= 2 𝑛 𝑂𝐴 − 2 𝑛𝑎𝑖𝑟 𝑂𝐴 𝑠𝑖𝑛(𝜃) 𝑠𝑖𝑛(𝑖) +
𝜆

2
 

= 2 𝑛 𝑂𝐴 − 2 𝑛 𝑂𝐴 𝑠𝑖𝑛(𝜃) 𝑠𝑖𝑛(𝜃) +
𝜆

2
 

= 2 𝑛 𝑂𝐴 (1 − 𝑠𝑖𝑛2(𝜃)) +
𝜆

2
 

= 2 𝑛 𝑂𝐴 𝑐𝑜𝑠2(𝜃) +
𝜆

2
 

Soit finalement : 

𝜹 = 𝟐 𝒏 𝒆 𝒄𝒐𝒔(𝜽) +
𝝀

𝟐
 

 

6) Application à l’iridescence observée sur les ailes de certains insectes 

 

L’iridescence est le phénomène par lequel les ailes de mouches, de libellules ou de certains 
papillons semblent changer de couleur selon l’angle d’observation. 

Pour le type de papillon morpho, les écailles recouvrant les ailes peuvent être considérées 
comme une couche mince transparente d’indice de réfraction 𝑛 = 1,5  d’épaisseur 𝑒 =

0,085 𝜇𝑚 = 85 𝑛𝑚. Pour expliquer ce phénomène, on peut reprendre l’analyse précédente et, en 
supposant l’indice de réfraction à peu près constant sur la plage de longueurs d’onde observées, 
on peut évaluer quelles longueurs d’onde conduisent à des interférences constructives. La 
condition est : 

2 𝑛 𝑒 𝑐𝑜𝑠(𝜃) +
𝜆

2
= 2 𝑘 

𝜆

2
,   𝑘 ∈ ℤ 

Soit : 

2 𝑛 𝑒 𝑐𝑜𝑠(𝜃) = (2 𝑘 − 1) 
𝜆

2
 



D’où : 

𝝀 =
𝟒 𝒏 𝒆 𝒄𝒐𝒔(𝜽)

𝟐 𝒌 − 𝟏
=

𝟒 × 𝟏, 𝟓 × 𝟖𝟓 ×  𝒄𝒐𝒔(𝜽)

𝟐 𝒌 − 𝟏
=

𝟓𝟏𝟎  𝒄𝒐𝒔(𝜽)

𝟐 𝒌 − 𝟏
 𝒏𝒎, 𝒌 ∈ ℕ∗ 

Or : 

𝑛 𝑠𝑖𝑛(𝜃) = 𝑛𝑎𝑖𝑟 𝑠𝑖𝑛(𝑖) 

Donc : 

𝜃 = 𝐴𝑟𝑐𝑠𝑖𝑛 (
𝑛𝑎𝑖𝑟 𝑠𝑖𝑛(𝑖)

𝑛
) 

L’angle d’incidence pouvant varier entre 0° et 90°,  𝜃 varie entre un angle 𝜃𝑚𝑖𝑛 = 0 correspondant 
à 𝑖 = 0° (incidence normale) et un angle 𝜃𝑚𝑎𝑥 défini par une incidence rasante de 90° : 

𝜃𝑚𝑎𝑥 = 𝐴𝑟𝑐𝑠𝑖𝑛 (
𝑛𝑎𝑖𝑟 𝑠𝑖𝑛(90°)

𝑛
) = 𝐴𝑟𝑐𝑠𝑖𝑛 (

𝑛𝑎𝑖𝑟 

𝑛
) = 𝐴𝑟𝑐𝑠𝑖𝑛 (

1,0 

1,5
) ≈ 41,8° 

Pour 𝜃 = 0, les longueurs d’onde donnant des interférences constructives sont donc : 

𝜆 =
510

2 𝑘 − 1
 𝑛𝑚, 𝑘 ∈ ℕ∗ 

et il n’y en a qu’une dans le domaine visible qui est : 

𝜆 = 510 𝑛𝑚 

ce qui correspond à la couleur cyan. 

Pour 𝜃 = 41,8°, les longueurs d’onde donnant des interférences constructives sont donc : 

𝜆 =
510 𝑐𝑜𝑠(41,8°)

2 𝑘 − 1
= 380  𝑛𝑚 

et elle se trouve dans le domaine des ultra-violet à la frontière du visible 

Les couleurs observées iront donc du cyan au violet selon l’angle d’observation 

Voilà une photo d’un papillon morpho montrant le phénomène : 

 

 

Une autre situation où apparait le phénomène d’iridescence est celui des bulles de savon, du 
carburant formant sur l’eau une fine couche, ou bien des CD 

 



 

 

 

 

 

 


