
Formes bilinéaires symétriques et formes sesquilinéaires hermitiennes 

 

1. Forme linéaire sur un ℝ espace vectoriel et forme semi-linéaire sur un ℂ espace 
vectoriel 

Soit 𝐸 un ℝ espace vectoriel et 𝐹 un ℂ espace vectoriel.  

Une forme linéaire sur 𝐸 est une application linéaire de 𝐸 dans ℝ c’est-à-dire une application 𝑓 
vérifiant : 

∀ (𝑢⃗ , 𝑣 , 𝜆) ∈ 𝐸 × 𝐸 × ℝ ∶   𝑓(𝑢⃗ + 𝜆 . 𝑣 ) = 𝑓(𝑢⃗ ) + 𝜆 . 𝑓(𝑣 ) 

Une forme semi-linéaire (ou anti-linéaire) sur 𝐹 est une application 𝑓 de 𝐹 dans ℂ vérifiant : 

∀ (𝑢⃗ , 𝑣 , 𝜆) ∈ 𝐹 × 𝐹 × ℂ ∶   𝑓(𝑢⃗ + 𝜆 . 𝑣 ) = 𝑓(𝑢⃗ ) + 𝜆̅ . 𝑓(𝑣 ) 

Expression générale d’une forme linéaire et d’une forme semi-linéaire en dimension finie dans 
une base (𝑒 1, 𝑒 2, … , 𝑒 𝑛). Pour 𝑢⃗ = 𝑥1 𝑒 1 + 𝑥2 𝑒 2 + ⋯+ 𝑥𝑛 𝑒 𝑛 : 

Forme linéaire : (𝑎1, 𝑎2, … , 𝑎𝑛) ∈ ℝ𝑛 

𝑓(𝑢⃗ ) = 𝑎1 𝑥1 + 𝑎2 𝑥2 + ⋯+ 𝑎𝑛 𝑥𝑛 

Forme semi-linéaire : (𝑎1, 𝑎2, … , 𝑎𝑛) ∈ ℂ 𝑛 

𝑓(𝑢⃗ ) = 𝑎1 𝑥1̅̅ ̅ + 𝑎2 𝑥2̅̅ ̅ + ⋯+ 𝑎𝑛 𝑥𝑛̅̅ ̅ 

Exemples en dimension infinie : 𝐸 = ensemble des fonctions de ℝ dans ℂ intégrables sur 
ℝ (𝑟𝑒𝑠𝑝 ℂ),   𝑢⃗ = (𝑥 → 𝑢(𝑥)), 𝑣 ∈ 𝐸 (𝑟𝑒𝑠𝑝 𝐹) 

Forme linéaire : 

𝑓(𝑢⃗ ) = ∫ 𝑣(𝑥) 𝑢(𝑥) 𝑑𝑥
+∞

−∞

 

Forme semi-linéaire :  

𝑓(𝑢⃗ ) = ∫ 𝑣(𝑥) 𝑢(𝑥)̅̅ ̅̅ ̅̅  𝑑𝑥
+∞

−∞

 

2. Forme bilinéaire et forme sesquilinéaire : 

Soit 𝐸 un ℝ espace vectoriel et 𝐹 un ℂ espace vectoriel.  

Une forme bilinéaire sur 𝐸 est une application 𝑓 sur 𝐸 × 𝐸, vérifiant : 

∀ (𝑢⃗ , 𝑣 , 𝑤⃗⃗ , 𝜆) ∈ 𝐸 × 𝐸 × ℝ ∶   

𝑓(𝑢⃗ + 𝜆 . 𝑣 , 𝑤⃗⃗ ) = 𝑓(𝑢,⃗⃗⃗  𝑤⃗⃗ ) + 𝜆 . 𝑓(𝑣 , 𝑤⃗⃗ ) 

𝑓(𝑢⃗ , 𝑣 + 𝜆 . 𝑤⃗⃗ ) = 𝑓(𝑢,⃗⃗⃗  𝑣 ) + 𝜆 . 𝑓(𝑢⃗ , 𝑤⃗⃗ ) 

𝑓 est dite linéaire par rapport à sa première et à sa deuxième variable. 

 

 



Une forme sesquilinéaire  sur 𝐹 est une application 𝑓 sur 𝐹 × 𝐹 vérifiant : 

∀ (𝑢⃗ , 𝑣 , 𝑤⃗⃗ , 𝜆) ∈ 𝐸 × 𝐸 × ℝ ∶   

𝑓(𝑢⃗ + 𝜆 . 𝑣 , 𝑤⃗⃗ ) = 𝑓(𝑢,⃗⃗⃗  𝑤⃗⃗ ) + 𝜆 . 𝑓(𝑣 , 𝑤⃗⃗ ) 

𝑓(𝑢⃗ , 𝑣 + 𝜆 . 𝑤⃗⃗ ) = 𝑓(𝑢,⃗⃗⃗  𝑣 ) + 𝜆̅ . 𝑓(𝑢⃗ , 𝑤⃗⃗ ) 

𝑓 est dite linéaire par rapport à sa première et anti-linéaire par rapport à sa deuxième variable. 

Expression générale d’une forme bilinéaire et d’une forme sesquilinéaire en dimension finie dans 
une base (𝑒 1, 𝑒 2, … , 𝑒 𝑛). Pour 𝑢⃗ = 𝑥1 𝑒 1 + 𝑥2 𝑒 2 + ⋯+ 𝑥𝑛 𝑒 𝑛, 𝑣 = 𝑦1 𝑒 1 + 𝑦2 𝑒 2 + ⋯+ 𝑦𝑛 𝑒 𝑛 et en 
notant : 𝑋𝑇 = (𝑥1, 𝑥2, … , 𝑥𝑛), 𝑌 = (𝑦1, 𝑦2, … , 𝑦𝑛)𝑇 : 

Forme bilinéaire : 𝐴 = (𝑎𝑖𝑗) ∈ ℳ𝑛(ℝ) 

𝑓(𝑢⃗ , 𝑣 ) = ∑ 𝑎𝑖𝑗  𝑥𝑖  𝑦𝑗 

(𝑖,𝑗)

= 𝑋𝑇 𝐴  𝑌  

Forme sesquilinéaire : (𝑎𝑖𝑗) ∈ ℳ𝑛(ℂ) 

𝑓(𝑢⃗ , 𝑣 ) = ∑ 𝑎𝑖𝑗  𝑥𝑖  𝑦𝑗̅ 

(𝑖,𝑗)

= 𝑋𝑇 𝐴  𝑌̅ 

Exemples en dimension infinie :Soit 𝐸 (resp 𝐹) l’ ensemble des fonctions de ℝ  dans ℝ (𝑟𝑒𝑠𝑝 ℂ) 
intégrables sur ℝ ,   𝑢⃗ = (𝑥 → 𝑢(𝑥)), 𝑣 = (𝑥 → 𝑣(𝑥)), 𝑎 ∈ 𝐸 (𝑟𝑒𝑠𝑝 𝐹) 

Forme bilinéaire : 

𝑓(𝑢⃗ , 𝑣 ) = ∫ 𝑎(𝑥) 𝑢(𝑥) 𝑣(𝑥) 𝑑𝑥
+∞

−∞

 

Forme sesquilinéaire :  

𝑓(𝑢⃗ , 𝑣 ) = ∫ 𝑎(𝑥) 𝑢(𝑥) 𝑣(𝑥)̅̅ ̅̅ ̅̅  𝑑𝑥
+∞

−∞

 

3. Forme bilinéaire symétrique et forme sesquilinéaire hermitienne : 

Une forme bilinéaire sur 𝐸  est dite symétrique si elle vérifie : 

∀ (𝑢⃗ , 𝑣 ) ∈ 𝐸 × 𝐸 ∶  𝑓(𝑣 , 𝑢⃗ ) =  𝑓(𝑢⃗ , 𝑣 ) 

Une forme bilinéaire sur 𝐹  est dite hermitienne si elle vérifie : 

∀ (𝑢⃗ , 𝑣 ) ∈ 𝐹 × 𝐹 ∶  𝑓(𝑣 , 𝑢⃗ ) =  𝑓(𝑢⃗ , 𝑣 )̅̅ ̅̅ ̅̅ ̅̅ ̅ 

Pour les exemples donnés précédemment, c’est le cas en dimension finie pour les formes 
linéaires telles que 𝐴 soit symétrique, c’est-à-dire vérifie 𝐴𝑇 = 𝐴 et pour les formes 
sesquilinéaires telles que 𝐴 soit hermitienne, c’est-à-dire vérifie 𝐴𝑇 = 𝐴̅. 

 

 

 



Exemples : 

Forme bilinéaire symétrique sur ℝ3: 

𝑓(𝑢⃗ , 𝑣 ) = (𝑥1, 𝑥2, 𝑥3) (
7 4 6
4 2 −5
6 −5 3

) (

𝑦1

𝑦2

𝑦3

) = (𝑥1, 𝑥2, 𝑥3) (

7 𝑦1 + 4 𝑦2 + 6 𝑦3 
4 𝑦1 + 2 𝑦2 − 5 𝑦3

6 𝑦1 − 5 𝑦2 + 3 𝑦3

) = 

= 7𝑥1 𝑦1 + 4 𝑥1 𝑦2 + 6 𝑥1 𝑦3 + 4 𝑥2 𝑦1 + 2 𝑥2 𝑦2 − 5 𝑥2 𝑦3 + 6 𝑥3 𝑦1 − 5 𝑥3 𝑦2 + 3 𝑥3 𝑦3 

 

Forme sesquilinéaire hermitienne sur ℂ3: 

𝑓(𝑢⃗ , 𝑣 ) = (𝑥1, 𝑥2, 𝑥3) (
7 −4 𝑖 6
4 𝑖 2 −5 + 𝑖
6 −5 − 𝑖 3

) (
𝑦1̅̅ ̅
𝑦2̅̅ ̅
𝑦3̅̅ ̅

) = (𝑥1, 𝑥2, 𝑥3) (

7 𝑦1̅̅ ̅ − 4 𝑖 𝑦2̅̅ ̅ + 6 𝑦3̅̅ ̅ 

4 𝑖 𝑦1̅̅ ̅ + 2 𝑦2̅̅ ̅ + (−5 + 𝑖) 𝑦3̅̅ ̅

6 𝑦1̅̅ ̅ + (−5 − 𝑖) 𝑦2̅̅ ̅ + 3 𝑦3̅̅ ̅
)

= 

= 7𝑥1 𝑦1̅̅ ̅ − 4 𝑖 𝑥1 𝑦2̅̅ ̅ + 6 𝑥1 𝑦3̅̅ ̅ + 4 𝑖 𝑥2 𝑦1̅̅ ̅ + 2 𝑥2 𝑦2̅̅ ̅ + (−5 + 𝑖) 𝑥2 𝑦3̅̅ ̅ + 6 𝑥3 𝑦1̅̅ ̅ + (−5 − 𝑖) 𝑥3 𝑦2̅̅ ̅

+ 3 𝑥3 𝑦3̅̅ ̅ 

4. Forme bilinéaire  et forme sesquilinéaire associée à un opérateur fonctionnel 

Soit 𝐸 (resp 𝐹) l’ ensemble des fonctions de ℝ  dans ℝ (𝑟𝑒𝑠𝑝 ℂ) intégrables sur ℝ ,  

  𝑢⃗ = (𝑥 → 𝑢(𝑥)), 𝑣 = (𝑥 → 𝑣(𝑥))  ∈ 𝐸(𝑟𝑒𝑠𝑝 𝐹). 

Soit 𝐴̂ un opérateur fonctionnel linéaire sur 𝐸 (resp 𝐹), c’est-à-dire un endomorphisme de 𝐸 
(resp 𝐹). Alors nous pouvons créer en notant 𝐴̂  𝑣(𝑥) = 𝐴̂(𝑣)(𝑥) respectivement : 

Une forme bilinéaire sur 𝐸 : 

𝑓(𝑢⃗ , 𝑣 ) = ∫ 𝑢(𝑥) 𝐴̂  𝑣(𝑥) 𝑑𝑥
+∞

−∞

 

Cette forme est symétrique si et seulement si l’opérateur 𝐴̂ vérifie pour tout couple (𝑢⃗ , 𝑣 ) ∶ 

∫ 𝑣(𝑥) 𝐴̂ 𝑢(𝑥) 𝑑𝑥
+∞

−∞

= ∫ 𝑢(𝑥) 𝐴̂ 𝑣(𝑥) 𝑑𝑥
+∞

−∞

 

On dit alors de l’opérateur 𝐴 qu’il est symétrique pour la forme bilinéaire définie positive 
canonique, laquelle définit un produit scalaire sur 𝐸 ∶ 

(𝑢⃗ , 𝑣 ) = ∫ 𝑢(𝑥)  𝑣(𝑥) 𝑑𝑥
+∞

−∞

 

Le caractère symétrique se traduit alors également pat l’écriture : 

(𝐴̂ 𝑢⃗ , 𝑣 ) = (𝐴̂ 𝑣 , 𝑢⃗ ) 

 

 

 

 



 

 

Une forme sesquilinéaire sur 𝐹:  

𝑓(𝑢⃗ , 𝑣 ) = ∫  𝑣(𝑥)̅̅ ̅̅ ̅̅  𝐴̂  𝑢(𝑥) 𝑑𝑥
+∞

−∞

 

Cette forme est hermitienne si et seulement si l’opérateur 𝐴 vérifie pour tout couple (𝑢⃗ , 𝑣 ) ∶ 

∫ 𝑢(𝑥)̅̅ ̅̅ ̅̅  𝐴̂  𝑣(𝑥) 𝑑𝑥
+∞

−∞

= ∫ 𝑣(𝑥)̅̅ ̅̅ ̅̅  𝐴̂  𝑢(𝑥) 𝑑𝑥
+∞

−∞

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 

On dit alors de l’opérateur 𝐴 qu’il est hermitien pour la forme sesquilinéaire définie positive 
canonique, laquelle définit un produit scalaire hermitien sur 𝐸 ∶ 

(𝑢⃗ , 𝑣 ) = ∫ 𝑢(𝑥)  𝑣(𝑥) ̅̅ ̅̅ ̅̅ ̅𝑑𝑥
+∞

−∞

 

Le caractère hermitien se traduit alors également pat l’écriture : 

(𝐴̂ 𝑢⃗ , 𝑣 ) = (𝐴̂ 𝑣 , 𝑢⃗ )̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

 

5. Exemples d’opérateurs hermitiens rencontrés en physique quantique : 

Exemple 1 : Opérateur associé au potentiel électrostatique 𝑽𝝐 𝑬  : 

Pour  (𝑥 → 𝜓(𝑥)) 𝜖 𝐹 :     𝐴̂ 𝜓(𝑥) = 𝑉(𝑥) 𝜓(𝑥)  

Preuve : 

𝜓(𝑥)̅̅ ̅̅ ̅̅ ̅ 𝐴̂ 𝜑(𝑥) = 𝜓(𝑥)̅̅ ̅̅ ̅̅ ̅ 𝑉(𝑥) 𝜑(𝑥) = 𝜑(𝑥)̅̅ ̅̅ ̅̅  𝑉(𝑥) 𝜓(𝑥) ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

Donc : 

(𝐴̂ 𝜑, 𝜓) = ∫ 𝜓(𝑥)̅̅ ̅̅ ̅̅ ̅ 𝐴̂ 𝜑(𝑥) 𝑑𝑥
+∞

−∞

= ∫ 𝜑(𝑥)̅̅ ̅̅ ̅̅  𝑉(𝑥) 𝜓(𝑥) 𝑑𝑥
+∞

−∞

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
= (𝐴̂ 𝜓, 𝜑)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

Exemple 2 : Opérateur associé à la quantité de mouvement  : 

(𝒙 → 𝝍(𝒙)) 𝝐 𝑭 ∶            𝑨̂ 𝝍(𝒙) = −𝒊 ℏ 
𝒅𝝍

𝒅𝒙
(𝒙) 

Preuve : 

(𝐴̂ 𝜑, 𝜓) = ∫ 𝜓(𝑥)̅̅ ̅̅ ̅̅ ̅ 𝐴̂ 𝜑(𝑥) 𝑑𝑥
+∞

−∞

= −𝑖 ℏ∫ 𝜓(𝑥)̅̅ ̅̅ ̅̅ ̅  
𝑑𝜑

𝑑𝑥
(𝑥) 𝑑𝑥

+∞

−∞

 

= −𝑖 ℏ ([𝜓(𝑥)̅̅ ̅̅ ̅̅ ̅ 𝜑(𝑥)]
−∞

+∞
− ∫  

𝑑𝜓̅

𝑑𝑥
(𝑥) 𝜑(𝑥) 𝑑𝑥

+∞

−∞

) 

= 𝑖 ℏ ∫  
𝑑𝜓̅

𝑑𝑥
(𝑥) 𝜑(𝑥) 𝑑𝑥

+∞

−∞

 



(𝐴̂ 𝜓, 𝜑) = 𝑖 ℏ ∫  
𝑑𝜑̅

𝑑𝑥
(𝑥) 𝜓(𝑥) 𝑑𝑥

+∞

−∞

= −𝑖 ℏ∫ 𝜓(𝑥)̅̅ ̅̅ ̅̅ ̅  
𝑑𝜑

𝑑𝑥
(𝑥) 𝑑𝑥

+∞

−∞

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
= (𝐴̂ 𝜑, 𝜓)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

 

Exemple 3 : Opérateur associé au carré de la norme de la quantité de mouvement  : 

(𝒙 → 𝝍(𝒙)) 𝝐 𝑭 ∶             𝑨̂ 𝝍(𝒙) =  ℏ𝟐  
𝒅𝟐𝝍

𝒅𝒙𝟐
(𝒙) 

Preuve : 

(𝐴̂ 𝜑, 𝜓) = ∫ 𝜓(𝑥)̅̅ ̅̅ ̅̅ ̅ 𝐴̂ 𝜑(𝑥) 𝑑𝑥
+∞

−∞

= ℏ2 ∫ 𝜓(𝑥)̅̅ ̅̅ ̅̅ ̅ 
𝑑2𝜑

𝑑𝑥2
(𝑥) 𝑑𝑥

+∞

−∞

 

=  ℏ2 ([𝜓(𝑥)̅̅ ̅̅ ̅̅ ̅  
𝑑𝜑

𝑑𝑥
(𝑥)]

−∞

+∞

− ∫  
𝑑𝜓̅

𝑑𝑥
(𝑥) 

𝑑𝜑

𝑑𝑥
(𝑥) 𝑑𝑥

+∞

−∞

) 

= −ℏ2 ∫  
𝑑𝜑

𝑑𝑥
(𝑥) 

𝑑𝜓̅

𝑑𝑥
(𝑥) 𝑑𝑥

+∞

−∞

 

(𝐴̂ 𝜓, 𝜑) = −ℏ2 ∫  
𝑑𝜓

𝑑𝑥
(𝑥) 

𝑑𝜑̅

𝑑𝑥
(𝑥) 𝑑𝑥

+∞

−∞

= (𝐴̂ 𝜑, 𝜓)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

Exemple  : Opérateur hamiltonien associé à l’énergie  : 

(𝒙 → 𝝍(𝒙)) 𝝐 𝑭:        𝑨̂ 𝝍(𝒙) =  −
ℏ𝟐

𝟐 𝒎
 
𝒅𝟐𝝍

𝒅𝒙𝟐
(𝒙) + 𝑽(𝒙) 𝝍(𝒙) 

Preuve : C’est la somme de deux opérateurs hermitiens. 

6. Valeurs propre et vecteurs propre d’un opérateur symétrique ou hermitien 

Commençons par définir de façon plus générale un opérateur symétrique réel : 

En dimension finie : 

Si 𝐴 est une matrice symétrique réelle (respectivement hermitienne complexe) d’ordre 𝑛, et 𝑋 =

(𝑥1, 𝑥2, … , 𝑥𝑛)𝑇 on pose : 

𝐴̂ ∶ 𝑋 → 𝐴 𝑋  

𝐴̂ n’est autre que l’application linéaire canonique associée à la matrice 𝐴 définie comme un 
endomorphisme de ℳ𝑛,1(ℝ) ( resp ℳ𝑛,1(ℂ)). 

Les valeurs propres et les vecteurs propres de l’opérateur 𝐴̂ sont ses valeurs propres et vecteurs 
propres en tant qu’endomorphisme, donc de la matrice 𝐴. 

 

 

 

 

 



Propriété : 

Soit 𝝀𝟏, 𝝀𝟐 deux valeurs propres distinctes de 𝑨̂ et 𝑿𝟏, 𝑿𝟐 deux vecteurs propres non nuls 
respectivement associés. Alors 𝑿𝟏 et 𝑿𝟐 sont orthogonaux pour le produit scalaire associé, 
c’est-à-dire : 

Pour 𝑨̂ symétrique : 

(𝑿𝟏, 𝑿𝟐) = 𝑿𝟐
𝑻 𝑿𝟏 = 𝟎 

Pour 𝑨̂ hermitien : 

(𝑿𝟏, 𝑿𝟐) = 𝑿𝟐
̅̅̅̅ 𝑻

 𝑿𝟏 = 𝟎 

Preuve :  

On montre tout d’abord que les valeurs propres d’une matrice hermitienne sont réelles. 

Soit 𝜆 une valeur propre de 𝐴 et 𝑋 un vecteur propre non nul associé. Alors : 

𝐴 𝑋 = 𝜆 𝑋  

En prenant le conjugué : 

𝐴̅ 𝑋̅ = 𝜆̅ 𝑋̅ 

Ainsi : 

𝑋̅𝑇𝐴 𝑋 = 𝜆  𝑋̅𝑇 𝑋  

𝑋̅𝑇𝐴 𝑋 = 𝑋𝑇𝐴𝑇𝑋̅ = 𝑋𝑇𝐴̅ 𝑋̅ = 𝜆̅  𝑋𝑇 𝑋̅ = 𝜆̅ 𝑋̅𝑇 𝑋 

Donc : 

𝜆  𝑋̅𝑇 𝑋 = 𝜆̅ 𝑋̅𝑇 𝑋 

Et comme 𝑋 ≠ 0 ∶  𝑋̅𝑇 𝑋 ≠ 0 donc : 𝜆 = 𝜆̅ 

 

Preuve de l’autre  propriété dans les cas d’une matrice symétrique et d’une matrice 
hermitienne : 

𝐴 𝑋1 = 𝜆1 𝑋1  

𝐴 𝑋2 = 𝜆2 𝑋2 

donc en prenant le conjugué : 

𝐴̅ 𝑋2
̅̅ ̅ = 𝜆2 𝑋2

̅̅ ̅ 

Et d’une part : 

𝑋2
̅̅ ̅𝑇

 𝐴 𝑋1 = 𝑋2
̅̅ ̅𝑇

 𝜆1 𝑋1 = 𝜆1 𝑋2
̅̅ ̅𝑇

 𝑋1 

D’autre part , en prenant la transposée 

𝑋2
̅̅ ̅𝑇

 𝐴 𝑋1 = (𝑋2
̅̅ ̅𝑇

 𝐴 𝑋1)
𝑇

= 𝑋1
𝑇 𝐴𝑇 𝑋2

̅̅ ̅ = 𝑋1
𝑇 𝐴̅ 𝑋2

̅̅ ̅ = 𝑋1
𝑇 𝜆2 𝑋2

̅̅ ̅ =  𝜆2 (𝑋1
𝑇 𝑋2
̅̅ ̅)

𝑇
= 𝜆2 𝑋2

̅̅ ̅𝑇
 𝑋1 



Ainsi : 

𝜆1 𝑋2
̅̅ ̅𝑇

 𝑋1 = 𝜆2 𝑋2
̅̅ ̅𝑇

 𝑋1 

Et comme 𝜆1  ≠ 𝜆2 : 

𝑋2
̅̅ ̅𝑇

 𝑋1 = 0 

En dimension infinie : 

Si 𝐴̂ est un opérateur fonctionnel, donc un endomorphisme de 𝐸 (resp 𝐹), ses valeurs propres et 
ses vecteurs propres sont ceux de cet endomorphisme. Ainsi, une fonction 𝜓 non nulle est 
vecteur propre de 𝐴̂ associée à une valeur propre 𝜆 si : 

𝐴̂ 𝜓 = 𝜆 𝜓 

Ce qui signifie : 

∀ 𝑥 ∈  ℝ ∶  𝐴̂ (𝜓)(𝑥) = 𝜆 𝜓(𝑥)  

Propriété : 

Soit 𝑨̂ un opérateur fonctionnel symétrique (resp hermitien). 

Soit 𝝀𝟏, 𝝀𝟐 deux valeurs propres distinctes de 𝑨̂ et 𝝍𝟏, 𝝍𝟐 deux vecteurs propres non nuls 
respectivement associés. Alors 𝝍𝟏 et 𝝍𝟐 sont orthogonaux pour le produit scalaire associé, 
c’est-à-dire : 

Pour 𝑨̂ symétrique : 

(𝝍𝟏, 𝝍𝟐) = ∫  𝝍𝟏(𝒙) 𝝍𝟐(𝒙) 𝒅𝒙
+∞

−∞

= 𝟎 

Pour 𝑨̂ hermitien : 

(𝝍𝟏, 𝝍𝟐) = ∫ 𝝍𝟏(𝒙)   𝝍𝟐(𝒙)̅̅ ̅̅ ̅̅ ̅̅  𝒅𝒙
+∞

−∞

= 𝟎 

Preuve :  

On montre tout d’abord que les valeurs propres d’un opérateur fonctionnel hermitien sont 
réelles. 

Soit 𝜆 une valeur propre de 𝐴̂ et 𝜓 un vecteur propre non nul associé. Alors : 

𝐴̂ 𝜓 = 𝜆 𝜓  

En prenant le conjugué : 

𝐴̂ 𝜓̅̅ ̅̅ ̅ = 𝜆̅ 𝜓̅ 

Ainsi : 

(𝐴̂ 𝜓, 𝜓) = ∫ 𝜓(𝑥)̅̅ ̅̅ ̅̅ ̅  𝐴̂ 𝜓(𝑥) 𝑑𝑥
+∞

−∞

= 𝜆∫ | 𝜓(𝑥)|2 𝑑𝑥
+∞

−∞

  

 



Or : 

(𝐴̂ 𝜓, 𝜓) = (𝐴̂ 𝜓, 𝜓)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = ∫ 𝜓(𝑥)̅̅ ̅̅ ̅̅ ̅  𝐴̂ 𝜓(𝑥)𝑑𝑥
+∞

−∞

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
= ∫ 𝜓(𝑥)  𝐴̂ 𝜓(𝑥̅̅ ̅̅ ̅̅ ̅̅ ) 𝑑𝑥

+∞

−∞

= ∫ 𝜓(𝑥)  𝜆̅ 𝜓̅(𝑥)𝑑𝑥
+∞

−∞

 

= 𝜆̅ ∫ | 𝜓(𝑥)|2 𝑑𝑥
+∞

−∞

 

Or : 

∫ | 𝜓(𝑥)|2 𝑑𝑥
+∞

−∞

≠ 0 

Donc : 

𝜆 = 𝜆̅ 

 

Preuve de l’autre  propriété dans les cas d’un opérateur fonctionnel symétrique ou hermitien : 

𝐴̂ 𝜓1 = 𝜆1 𝜓1  

𝐴̂ 𝜓2 = 𝜆2 𝜓2 

donc en prenant le conjugué : 

𝐴̂ 𝜓2
̅̅ ̅̅ ̅̅ = 𝜆2 𝜓2

̅̅̅̅  

Et d’une part : 

(𝐴̂ 𝜓1, 𝜓2) = ∫ 𝜓2(𝑥)̅̅ ̅̅ ̅̅ ̅̅   𝐴̂ 𝜓1(𝑥) 𝑑𝑥
+∞

−∞

= 𝜆1  ∫ 𝜓2(𝑥)̅̅ ̅̅ ̅̅ ̅̅    𝜓1(𝑥) 𝑑𝑥
+∞

−∞

 

D’autre part : 

(𝐴̂ 𝜓1, 𝜓2) = (𝐴̂ 𝜓2, 𝜓1)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = ∫ 𝜓1(𝑥)̅̅ ̅̅ ̅̅ ̅̅   𝐴̂ 𝜓2(𝑥) 𝑑𝑥

+∞

−∞

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
= ∫ 𝜓1(𝑥)  𝐴̂ 𝜓2(𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  𝑑𝑥

+∞

−∞

= ∫ 𝜓1(𝑥)  𝜆2 𝜓2
̅̅̅̅ (𝑥) 𝑑𝑥

+∞

−∞

= 𝜆2  ∫ 𝜓2(𝑥)̅̅ ̅̅ ̅̅ ̅̅    𝜓1(𝑥) 𝑑𝑥
+∞

−∞

 

Ainsi : 

𝜆1  ∫ 𝜓2(𝑥)̅̅ ̅̅ ̅̅ ̅̅    𝜓1(𝑥) 𝑑𝑥
+∞

−∞

= 𝜆2  ∫ 𝜓2(𝑥)̅̅ ̅̅ ̅̅ ̅̅    𝜓1(𝑥) 𝑑𝑥
+∞

−∞

 

Et comme 𝜆1  ≠ 𝜆2 : 

∫ 𝜓2(𝑥)̅̅ ̅̅ ̅̅ ̅̅    𝜓1(𝑥) 𝑑𝑥
+∞

−∞

= 0 

7. Diagonalisation des opérateurs symétriques ou hermitiens 

 

 

 


