Exercice 3

On considère les suites $(u_n)_{n\in\mathbb{N}^*}$ et $(v_n)_{n\in\mathbb{N}^*}$ définies par :

$$u_1=1,\,et\,\,pour\,\,n\geqslant 2, u_n=\frac{1}{n}+\ln\left(1-\frac{1}{n}\right); v_n=\frac{1}{n}-\ln\left(1+\frac{1}{n}\right).$$

1) Rappeler le domaine de définition de la fonction :

$$x \mapsto x + \ln(1 - x)$$

Etudier ses variations sur l'intervalle [0, 1[.

Préciser son développement de Taylor à l'ordre 2 en 0.

- 2) Soit n un entier naturel non nul. Quel est le signe de u_n ?
- 3) Justifier que la série de terme général u_n est convergente.

4) Etudier la fonction :

$$f: x \mapsto x - \ln(1+x)$$

 $sur\ l'intervalle\ [0,1].$

- 5) Justifier que la série de terme général v_n est convergente.
- 6) Soit n un entier naturel non nul. Exprimer $v_n u_n$ en fonction de n.

En déduire une expression de $\sum_{n=1}^{N} (v_n - u_n)$ en fonction de l'entier naturel N, pour $N \ge 3$.

7) Que peut-on dire des suites $\left(\sum_{n=1}^N v_n\right)_{N\in\mathbb{N}^*}$ et $\left(\sum_{n=1}^N u_n\right)_{N\in\mathbb{N}^*}$?

Montrer que $\sum_{n=1}^{+\infty} u_n = \sum_{n=1}^{+\infty} v_n$.

Dans la suite de l'exercice, on notera γ la somme commune des séries $\sum_{n\geqslant 1}u_n$ et $\sum v$

$$et \sum_{n\geqslant 1} v_n$$
.

8) Pour tout entier naturel n non nul, on pose :

$$A_n = \sum_{k=1}^n \frac{1}{k} - \ln(n)$$

Montrer que la suite $(A_n)_{n\in\mathbb{N}^*}$ est décroissante.

On pourra par exemple considérer $A_n - A_{n-1}$ pour $n \ge 2$.

9) Exprimer les sommes partielles de la série $\sum_{n\geqslant 1} u_n$ en fonction des termes de la suite $(A_n)_{n\in\mathbb{N}^*}$.

En déduire que la suite $(A_n)_{n\in\mathbb{N}^*}$ est convergente de limite γ .

Corrigé

1)
$$f: x \rightarrow x + Ln(1-x) D_f =]-\infty, 1[$$

f est dérivable sur $]-\infty$, 1[et :

$$f'(x) = 1 - \frac{1}{1 - x} = -\frac{x}{1 - x}$$

f' est donc négative ou nulle sur [0,1[et ne s'annule qu'en un point isolé 0, donc f est strictement décroissante sur [0,1[. De plus :

$$\lim_{x \to 1^{-}} f(x) = -\infty$$
, $f(0) = 0$

Donc f est strictement négative sur]0,1[et en 0 :

$$f(x) = x + (-x) - \frac{1}{2}(-x)^2 + o((-x)^2)$$
$$= -\frac{1}{2}x^2 + o(x^2)$$

2)

$$u_n = f\left(\frac{1}{n}\right) < 0$$

3)

$$u_n = -\frac{1}{2 n^2} + o\left(\frac{1}{n^2}\right) \sim = -\frac{1}{2 n^2}$$

Or la série de terme général $-\frac{1}{2\,n^2}$ converge donc la série de terme général u_n converge.

4)
$$g: x \to x - Ln(1+x) D_f =]-1, +\infty[$$

g est dérivable sur $]-1,+\infty[$ et :

$$g'(x) = 1 - \frac{1}{1+x} = \frac{x}{1-x}$$

g' est donc positive ou nulle sur]0,1] et ne s'annule qu'en un point isolé 0, donc g est strictement croissante sur]0,1]. De plus :

$$g(0) = 0$$

Donc g est strictement positive sur [0,1] et en 0 :

$$g(x) = x - \left(x - \frac{1}{2}x^2 + o(x^2)\right)$$
$$= \frac{1}{2}x^2 + o(x^2)$$

Or:

$$v_n = g\left(\frac{1}{n}\right) < 0$$

5) On a:

$$v_n = \frac{1}{2 n^2} + o\left(\frac{1}{n^2}\right) \sim = \frac{1}{2 n^2}$$

Or la série de terme général $\frac{1}{2 n^2}$ converge donc la série de terme général v_n converge.

$$v_1 - u_1 = -Ln(2)$$

Pour $n \ge 2$:

$$v_n - u_n = -Ln\left(1 + \frac{1}{n}\right) - Ln\left(1 - \frac{1}{n}\right) = -Ln\left(1 - \frac{1}{n^2}\right)$$
$$= Ln\left(\frac{n^2}{n^2 - 1}\right) = Ln\left(\frac{n n}{(n+1)(n-1)}\right)$$
$$= Ln\left(\frac{n}{n+1}\right) - Ln\left(\frac{n-1}{n}\right)$$

On en déduit la somme télescopique pour $N \ge 2$:

$$\sum_{n=1}^{N} (v_n - u_n) = v_1 - u_1 + \sum_{n=2}^{N} (v_n - u_n)$$

$$= -Ln(2) + \sum_{n=1}^{N} \left(Ln\left(\frac{n}{n+1}\right) - Ln\left(\frac{n-1}{n}\right) \right) = -Ln(2) + Ln\left(\frac{N}{N+1}\right) - Ln\left(\frac{1}{n}\right)$$

$$Ln\left(\frac{N}{N+1}\right)$$

7) On a:

 $\sum_{n=1}^N u_n$ est décroissante, $\sum_{n=1}^N v_n$ est croissante et :

$$\lim_{N\to\infty} \sum_{n=1}^{N} v_n - \sum_{n=1}^{N} u_n = \lim_{N\to\infty} \ln\left(\frac{N}{N+1}\right) = 0$$

Donc les deux suites sont adjacentes. Elles admettent donc une même limite γ

8) pour $n \ge 2$ on a :

$$A_n - A_{n-1} = \sum_{k=1}^n \frac{1}{k} - Ln(n) - \sum_{k=1}^{n-1} \frac{1}{k} + Ln(n-1) = \frac{1}{n} + Ln\left(1 - \frac{1}{n}\right) = u_n < 0$$

Donc la suite (A_n) est strictement décroissante

9) pour $N \ge 2$ on a:

$$\sum_{n=2}^{N} (A_n - A_{n-1}) = \sum_{n=2}^{N} u_n$$

Donc:

$$A_N - A_1 = \sum_{n=2}^N u_n$$

$$A_N - A_1 + u_1 = \sum_{n=1}^{N} u_n$$

Finalement:

$$\sum_{n=1}^{N} u_n = A_N, \quad \lim_{N \to \infty} A_N = \gamma$$